Article by: Hari Yellina (Orchard Tech)
There is a hoard of changes that come along with switching to organic farming. Even though most of them are positive, there are a few that are worth considering.
Sustainability over Long Term
Many changes observed in the environment are long term, occurring slowly over time. Organic agriculture considers the medium- and long-term effect of agricultural interventions on the agro-ecosystem. It aims to produce food while establishing an ecological balance to prevent soil fertility or pest problems. Organic agriculture takes a proactive approach as opposed to treating problems after they emerge.
Soil
Soil building practices such as crop rotations, inter-cropping, symbiotic associations, cover crops, organic fertilizers and minimum tillage are central to organic practices. These encourage soil fauna and flora, improving soil formation and structure and creating more stable systems. In turn, nutrient and energy cycling is increased and the retentive abilities of the soil for nutrients and water are enhanced, compensating for the non-use of mineral fertilizers. Such management techniques also play an important role in soil erosion control. The length of time that the soil is exposed to erosive forces is decreased, soil biodiversity is increased, and nutrient losses are reduced, helping to maintain and enhance soil productivity. Crop export of nutrients is usually compensated by farm-derived renewable resources but it is sometimes necessary to supplement organic soils with potassium, phosphate, calcium, magnesium and trace elements from external sources.
Water
In many agriculture areas, the pollution of groundwater courses with synthetic fertilizers and pesticides is a major problem. As the use of these is prohibited in organic agriculture, they are replaced by organic fertilizers (e.g. compost, animal manure, green manure) and through the use of greater biodiversity (in terms of species cultivated and permanent vegetation), enhancing soil structure and water infiltration. Well managed organic systems with better nutrient retentive abilities, greatly reduce the risk of groundwater pollution. In some areas where pollution is a real problem, conversion to organic agriculture is highly encouraged as a restorative measure (e.g. by the Governments of France and Germany).
Air and climate change
Organic agriculture reduces non-renewable energy use by decreasing agrochemical needs (these require high quantities of fossil fuel to be produced). Organic agriculture contributes to mitigating the greenhouse effect and global warming through its ability to sequester carbon in the soil. Many management practices used by organic agriculture (e.g. minimum tillage, returning crop residues to the soil, the use of cover crops and rotations, and the greater integration of nitrogen-fixing legumes), increase the return of carbon to the soil, raising productivity and favouring carbon storage. A number of studies revealed that soil organic carbon contents under organic farming are considerably higher. The more organic carbon is retained in the soil, the more the mitigation potential of agriculture against climate change is higher. However, there is much research needed in this field, yet. There is a lack of data on soil organic carbon for developing countries, with no farm system comparison data from Africa and Latin America, and only limited data on soil organic carbon stocks, which is crucial for determining carbon sequestration rates for farming practices.